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ABSTRACT

Many of the systems encountered in the real world are
too complex and/or too ill-defined to be susceptible of exact analysis.
The concept of a fuzzy set, that is, a class which admits of intermediate
grades of membership in it, opens the possibility of analyzing such
systems both qualitatively and quantitatively by allowing the input and/or
the output and/or the state of the system to range over fuzzy sets. 1In
this paper, several basic concepts relating to the characterization of
discrete-time fuzzy systems are introduced and input-output-state
equations for such systems are developed.
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INTRODUCTION

Many of the advances in network theory and system theory
during the past three decades are traceable to the influence and contri~-
butions of Ernst Guillemin, Norbert Wiener, Richard Bellman, Rudolph
Kalman, and their students. In sum, we now possess an impressive arma-
mentarium of techniques for the analysis and synthesis of linear and non-
linear systems of various types - techniques which are particularly ef-
fective in dealing with systems characterized by ordinary differential
or difference equations of moderately high order such as are encountered
in network theory, control theory and related fields.

What we still lack, and lack rather acutely, are methods
for dealing with systems which are too complex or too ill-defined to ad-
mit of precise analysis. Such systems pervade life sciences, social
sciences, philosophy, economics, psychology and many other "soft" fields.
Furthermore, they are encountered in what are normally regarded as '"non-
soft" fields when the complexity of a system rules out the possibility
of analyzing it by conventional mathematical means, whether with or with-
out the aid of computers. Many examples of such systems are found among
large-scale traffic control systems, pattern recognition systems, machine
translators, large-scale information processing systems, large-scale
power distribution networks, neural networks and games such as chess,
checkers, etc.

Perhaps the major reason for the ineffectiveness of classi-
cal mathematical techniques in dealing with systems of high order of com-
plexity lies in their failure to come to grips with the issue of fuzzi-~
ness, that is, with imprecision which stems not from randommness but from
a lack of sharp transition from membership in a class to non-membership
in it. It is this type of imprecision which arises when one speaks, for
example, of the class of real numbers which are much larger than 10,
since the real numbers cannot be divided dichotomously into those that

are much larger than 10 and those that are not. The same applies to

classes such as "tall men," "good strategies for playing chess," "pairs

"ot

of numbers which are approximately equal to one another, systems which



" etc. Actually, most of the classes encounter-

are approximately linear,
ed in the real world are of this fuzzy, imprecisely defined, kind. What
sets such classes apart from classes which are well defined in the con-
ventional mathematical sense is the fuzziness of their boundaries. In
effect, in the case of a class with a fuzzy boundary, an object may have
a grade of membership in it which lies somewhere between full membership
and non-membership.

A class which admits of the possibility of partial member-
ship in it is called a fuzzy set.l In this sense, the class of tall men,

for example, is a fuzzy set, as is the class of real numbers which are

much larger than 10. We make a fuzzy statement or assertion when some

of the words appearing in the statement or assertion in question are
names for fuzzy sets. This is true, for example, of statements such as

"John is tall," "x is approximately equal to 5," "y is much larger than

10," etc. In these statements, the sources of fuzziness are the under-
lined words, which, in effect, are labels for fuzzy sets.

Why is fuzziness so relevant to complexity? Because no
matter what the nature of a system is, when its complexity exceeds a cer-
tain threshold it becomes impractical or computationally infeasible to
make precise assertions about it. For example, in the case of chess the
size of the decision tree is so large that it is impossible, in general,
to find a precise algorithmic solution to the following problem: Given
the position of pieces on the board, determine an optimal next move.
Similarly, in the case of a large-scale traffic control system, the com-
plexity of the system precludes the possibility of precise evaluation of
its performance. Thus, any significant assertion about the performance
of such a system must necessarily be fuzzy in nature, with the degree of
fuzziness increasing with the complexity of the system.

How can fuzziness be made a part of system theory? A tenta-
tive step in this direction was taken in recent papersz’3 in which the

notions of a fuzzy system* and fuzzy algorithm were introduced. In what

* The maximin automata of Wee and Santos (Refs. 4 and 5) may be regarded
as instances of fuzzy systems.
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follows, we shall proceed somewhat further in this direction, focusing
our attention on the definition of a fuzzy system and its state. It
should be emphasized, however, that the task of constructing a complete.
theory of fuzzy systems is one of very considerable magnitude, and that
what we shall have to say about fuzzy systems in the sequel is merely a
first step toward devising a conceptual framework for dealing with such

systems in both qualitative and quantitative ways.



CHAPTER I

ELEMENTARY PROPERTIES OF FUZZY SETS

The concept of a fuzzy system is intimately related to that
of a fuzzy set. In order to make our discussion self-contained, it will
be helpful to begin with a brief summary of some of the basic definitions

pertaining to such sets.*

Definition of a fuzzy set. Let X = {x} denote a space of points (objects),

with x denoting a generic element of X. Then a fuzzy set A in X is a set

of ordered pairs
A = {(x, uA(x))} . x € X 1.1

where uA(x) is termed the grade of membership of x in A. Thus, if uA(x)

takes values in a space M - termed the membership space - then A is essen-

tially a function from X to M. The function uA:X+M which defines A is

called the membership function of A. When M contains only two points 0

and 1, A is non-fuzzy and its membership function reduces to the conven-

tional characteristic function of a non-fuzzy set.

Intuitively, a fuzzy set A in X is a class without sharply
defined boundaries, that is, a class in which a point (object) x may have
a grade of membership intermediate between full membership and non-member-
ship. The important point to note is that such a fuzzy set can be defined
precisely by associating with each x its grade of membership in A. 1In
what follows, we shall assume for simplicity that M is the interval [0,1],

with the grades 0 and 1 representing, respectively, non-membership and

* More detailed discussions of fuzzy sets and their properties may be
found in the references listed in the Bibliography.
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full membership in a fuzzy set. (More generally, M can be a partially
ordered set or, more particularly, a 1attice.6) Thus, our basic assump-
tion will be that a fuzzy set A in X, even though lacking in sharply de-
fined boundaries, can be precisely characterized by a membership func-
tion which associates with each x in X a number in the interval [0,1]

representing the grade of membership of x in A.

Example. Let A = {x | x >> 1} (i.e., A is the fuzzy set of real numbers
which are much larger than 1). Such a set may be defined subjectively by

a membership function such as:

uA(x) = 0 for x <1

(1+ (x- 1)'2)_1 for x> 1

It is important to note that in the case of a fuzzy set it
is not meaningful to speak of an object as belonging or not belonging to
that set, except for objects whose grade of membership in the set is
unity or zero. Thus, if A is the fuzzy set of tall men, then the state-
ment "John is tall" should not be interpreted as meaning that John be-
longs to A, Rather, such a statement should be interpreted as an asso-
ciation of John with fuzzy set A - an association which will be denoted
by John € A to distinguish it from an assertion of belonging in the usual
non-fuzzy sense, that is, John € A, which is meaningful only when A is

non—fuzzy.*

Containment. Let A and B be fuzzy sets in X. Then A is contained in B

(or A is a subset of B) written as A C B, if and only if uA(x) < uB(x)

* Here and elsewhere in this paper we shall employ the convention of
underscoring a symbol with a wavy bar to represent a fuzzified version
of the meaning of that symbol. For example, x = y will denote a fuzzy
equality of x and y; x > y will denote fuzzy implication, etc.



for all x in X. (In the sequel, to simplify the notation we shali omit
x when an equality or inequality holds for all values of x in X.)

2
Example. 1If My = Hps then A C B.

Equality. Two fuzzy sets are equal, written as A = B, if and only if

Complementation. A fuzzy set A' is the complement of a fuzzy set A if

and only if Hpr = 1 - M-

Example. The fuzzy sets A = {x | x >> 1} and A' = {x | x not >> 1} are

complements of one another.

Union. The union of A and B is denoted by A U B and is defined as the
smallest fuzzy set containing both A and B. The membership function of
A U B is given by YauR = Max[uA,uB]. Thus, if at a point x, uA(x) = 0.9,
say, and uB(x) = 0.4, then at that point uAUB(x) = 0.9.

As in the case of non-fuzzy sets, the notion of the union
is closely related to that of the connective "or'". Thus, if A is a class
of tall men, B is a class of fat men and "John is tall" or "John is fat,"
then John is associated with the union of A and B. More generally, ex-

pressed in symbols, we have

X EA or X € B » x € AuUB 1.3

Intersection. The intersection of A and B is denoted by A N B and is de-

fined as the largest fuzzy set contained in both A and B, The membership

function of AN B is given by MaAnB = Min[uA,uB]. It is easy to verify
that AN B = (A" N B'")'. The relation between the connective "and" and

N is expressed by



X €A . and XEB » x€ANB 1.4

Algebraic product. The algebraic product of A and B is denoted by AB and

is defined by Map = MaMp*

Algebraic sum. The algebraic sum of A and B is denoted by A® B and is

defined by UA@B = U, + Hp = Mppe It is trivial to verify that A@ B =
(A'B')l .

Relation. A fuzzy relation, R, in the product space X x Y = {(x,y)},

x € X, ye Y, is a fuzzy set. in X x Y characterized by a membership func-

tion u_ which associates with each ordered pair (x,y) a grade of member-

R
ship uR(x,y) in R. More generally, an n-ary fuzzy relation in a product
space X = Xl x X2 X ... x X" is a fuzzy set in X characterized by an

n-variate membership function uR(xl, ey xn), X, € Xi, i=1, ..., n.

Example. Let X = Y x R, where R is the real line (~»,x). Then x >> y
is a fuzzy relation in R2. A subjective expression for pg in this case

might be: uR(x,y) = 0 for x £ y; uR(x,y) = (1 + (x - y)-z)_1 for x > y.

Composition of relations. If Rl and R2 are two fuzzy relations in Xz,

and R2 is meant a fuzzy relation in X2

then by the composition of R

1
which is denoted by Rl o R2 and is defined by
HRIORZ(X,Y) = S\;p Min(Rl(x,\)), Rz(\),y)) 1.5

where the supremum is taken over all v in X.

Fuzzy sets induced by mappings. Let f£:X»>Y be a mapping from X to Y, with

the image of x under f denoted by y = f(x). Let A be a fuzzy set in X.

Then, the mapping f induces a fuzzy set B in Y whose membership function



is given by

Hg(¥) = Sup  u, (%) 1.6
D)

where f_l(y) denotes the set of points in X which are mapped by f into y.

Shadow of a fuzzy set. Let A be a fuzzy set in X x Y, and let f denote

the mapping which takes (x,y) into x. The fuzzy set in X which is induced
by this mapping is called the shadow (projection) of A on X and is denoted
by SX(A)' In consequence of (1.6), the membership function of SX(A) is
given by

u (x) = Sup yu,(x,y) 1.7
SX(A) v A

where uA(x,y) is the membership function of A.

Conditioned fuzzy sets. A fuzzy set B(x) in Y will be said to be condi-

tioned on x if its membership function depends on x as a parameter. To
place this dependence in evidence, we shall denote the membership func-
tion of B(x) as uB(y | x) or - when B can be omitted with no risk of con-

fusion - as u(y | x).

Now suppose that the parameter x ranges over a space X. Then,
the function uB(y | x) defines a mapping from X to the space of fuzzy sets
defined on Y. Through this mapping, a fuzzy set A in X induces a fuzzy

set B in Y which is defined by

u(y) = Sup Min(u,(x), u (v | %)) 1.8
B et A B

where My and My denote the membership functions of A and B, respectively.
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In effect, (1.8) is a special case of the composition of relations (1.5).

The notion of a conditioned fuzzy set bears some resemblance
to the notion of a conditional probability distribution. Thus, (1.8) is
the counterpart of the familiar identity

pg(¥) =fx pB(y | x)pA(x)dx 1.9

where for simplicity x and y are assumed to be real-valued (x) denotes

s P
the probability density of x, pB(y l x) denotes the condition:I probability
density of y given x and pB(y) denotes the probability density of y.* It
is worthy of note that, in this as well as many other instances involving
fuzziness on the one hand and probability on the other, the corresponding
formulae differ from one another in that to the operations of summation
and integration involving probabilities corresponds the operation of tak-
ing the supremum (or maximum) of membership functions, and to the opera-
tion of multiplication of probabilities corresponds the operation of tak-
ing the infimum (or minimum) of membership functions. To make this cor-
respondence more evident, 1t is convenient to use the symbols V and A for

the supremum and infimum, respectively. Then, (1.9) becomes

up(y) = V(G A uy()x) 1.10
X

Similarly, (1.7) becomes

Hg(y) = v () 1.11

xef 1 (¢2)

* 70 simplify the notation, we use the same symbol to denote a random vari-
able and a generic value of that variable.



for which its probabilistic counterpart reads

(7)) = 2 p,®) 1.12
xet L (y)

where x and y are assumed to range over finite sets and pA(x) and pB(y)

denote probabilities rather than probability densities as in (1.9).

This concludes our brief summary of some of the basic con-
cepts relating to fuzzy sets. In what follows, we shall employ these
concepts in defining a fuzzy system and explore some of the elementary

properties of such systems.

10



CHAPTER II

SYSTEM, AGGREGATE AND STATE

For simplicity, we shall restrict our attention to time~
invariant discrete~time systems in which t, time, ranges over integers,

and the input and output at time t are real-valued.

In the theory of non-fuzzy discrete-time systems, it is cus-
tomary to introduce the notion of state at the very outset by defining a

system (I through its state equations:

M
)

e+l f(xt,ut) t= ..., =1, 0,1, ...
2.1

]
[

g(xt,ut)

where u, denotes the input at time t, Y, is the output at time t and X,

1s the state at time t, with the ranges of u and X, denoted by U,

e* Ve
Y and X, respectively. 1In this way, ({ is characterized by two mappings,
f:XxU»Z and g:XxU»Y. The space X is called the state space of Cl, and a

point o in X is called a state of ({.

Let u denote an input sequence starting at, say, t = 0. Thus,
u = ujuy...u where u, eEv, t=0,1, ..., 2, 2 = non-negative integer.
The set of all sequences whose elements are drawn from U will be denoted
by U*.

Now, to each state a in X and each input sequence u = e R
u, in U* will correspond an output sequence y = YY1 +Y, in Y*. The pair

of sequences (u,y) is called an input-output pair of length 2+1. The

totality of input-output pairs, (u,y), of varying lengths which correspond

to a particular state o in X will be referred to as an aggregate of input-

11



output pairs, or simply an aggregate, CZ(a), with o playing the role of

a label for this aggregate. The union

ad = U )
oeX

represents the totality of input-output pairs which correspond to all
the states of (. It is this totality of input-output pairs that we
shall equate with d.

The fact that a state is merely a label for an aggregate sug-
gests that the concept of an aggregate be accorded a central place among
the basic concepts of system-<theory. This is done implicitly in [8] and
[9)}, and explicitly in [10]. The point of departure in the theory devel-
oped in [8] is the definition of a system as a collection of input-output
pairs. An aggregate, then, may be defined as a subset of input-output
pairs which satisfy certain consistency conditions, with a state playing

the role of a name for an aggregate.

In what follows, we shall first generalize to fuzzy systems
the conventional approach in which a system is described through its
state equations. Then we shall indicate a connection between the notion
of a fuzzy algorithm and a fuzzy system. Finally, we shall present in a
summary form some of the basic definitions relating to the notion of an

aggregate and briefly touch upon their generalization to fuzzy systems.

12



CHAPTER 1XI

" STATE EQUATIONS FOR FUZZY SYSTEMS

e Yt and x, denote, respectively, the input, output

and state of a system A at time t. Such a system is said to be deter-

ministic if it is characterized by state equations of the form

M
I

e+l f(xt,ut) t=-1, 0, 1, 2, ..., 3.1

Ve g(xt,ut) 3.2

in which f and g are mappings from XxU to X and Y, respectively.

 is said to be non-deterministic if X1 and/or y, are not
t+1

uniquely determined by x, and u, . Let Xt+l(xt,ut) and Yt(xt,ut) or X

and Yt, for short, denote, respectively, the sets of possible values of

X and Veo given X, and u,. Then (3.1) and (3.2) can be replaced by

t+l t

equations of the form

P
i

F(xt,ut) 3.3

[
[}

G(xt,ut) 3.4

where F and G are mappings from XxU into the space of subsets of I and Y,
respectively. Thus, a non-deterministic system is characterized by equa-
tions of the form (3.3) and (3.4), in which Xt+l and Y© are subsets of X

and Y, respectively.

The next step in the direction of further generalization is

t+l .
to assume that X and Yt are fuzzy rather than non-fuzzy sets in X and

13



Y, respectively. In this case, we shall say that A is a fuzzy discrete -

time system. Clearly, such a system reduces to a non-deterministic sys-

t+l t .
tem when X and Y are non-fuzzy sets. In turn, a non~-deterministic

AP . +1 .
system reduces to a deterministic system when X" and ¥t are single

points (singletons) in their respective spaces.

Let ux(xt+l l Xt’ut) and uY(yt | xt,ut) denote the member-

ship functions of xt+l and Y, respectively, given X, and u_. Then we

can say that CZ is characterized by the two membership functions ux(xt+l |

xt,ut) and uY(yt I xt,ut), which define conditioned fuzzy sets in X and

Y, respectively, involving X, and u, as parameters,
. _ n3 a ;
To illustrate, suppose that X = R”. Then is a fuzzy sys-
tem if its characterization contains statements such as: "If an input

u_ = 5 is applied to (X in state x_ = (3,5,1) at time t, then the state

t t
of (1 at time t = 1 will be in the vicinity of the point (7,3,5)." Here
the set of points in X which lie in the vicinity of a given point o is a
fuzzy set in X. Such a set may be characterized by a membership function

such as
1
ux) = exp - |x - of 3.5

where x is a point in X, fx - af denotes a nmorm of the vector x - a, and

k is a positive constant.

By analogy with non-fuzzy systems, a fuzzy system (L will be
said to be memoryless if the fuzzy set Y" is independent of X, that is,
if its membership function is of the form uY(yt I ut). Just as a non-
fuzzy memoryless system is characterized by a graph Ve = g(ut), u € u,
so a fuzzy memoryless system is characterized by a fuzzy graph which is

a family of fuzzy sets {Yt(ut), u € u}l.

1L
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In the case of a memoryless system, to each point u, in U
corresponds a fuzzy set Yt(ut), or YF for short, in Y. Thus, we can

write

Y° = Glu) t=...,-1,0,1,2, ..., 3.6

where G is a function from R1 to the space of fuzzy sets in Y. Now in
consequence of (1.8), this implies that if tt is a fuzzy set in U char-
acterized by a membership function uU(ut), then to Ut will correspond

the fuzzy set Y® defined by the membership function

ne(y) = 1\1/ (ugCu) Ay ly, | u.)) 3.7
t

where V and A denote the supremum and minimum, respectively. Thus, (3.7)

establishes a relation between Ut and Yt which can be expressed as

t

Yt o= Go(Ut) t .., =1, 0,1, 2, ..., 3.8

where G0 is a function from the space of fuzzy sets in U to the space of

fuzzy sets in Y.

The important point to be noted here is that equation (3.6),
which expresses Y" as a function of U, induces equation (3.8), which ex-
presses Yt as a function of Ut. As should be expected, (3.8) reduces to

(3.6) when Ut is taken to be the singleton {ut}.
Intuitively, (3.6) and (3.8) may be interpreted as follows.

1f (A is a fuzzy memoryless system, then to every non—fuzzy input u_ at

time t corresponds a unique fuzzy output which is represented by a

15



conditioned fuzzy set Yt in Y, The membership function of this fuzzy

set is given by uY(yt | ut).

If the input to A is fuzzy, i.e., is a fuzzy set vt in U,
then the corresponding fuzzy output Y' is given uniquely by (3.8). The
membership function for Yt is expressed by (3.7).

As a very simple example, suppose that U and Y are finite
sets: U= {1,2,3} and Y = {1,2,3}. Furthermore, suppose that if the
input u_ is 1, then the output is a fuzzy set described verbally as "yt
is approximately equal to 1." Similarly, if u, = 2, then Ve is approxi-
= 3, then Ve is approximately equal to 3.

mately equal to 2, and if u,

More concretely, we assume that pY(yt | ut) is defined by the table:

@ | D=1 ug(2 ] 1) = 0.3 uy(3 ] 1) = 0.1
ne( | 2) = 0.2 up(2 | 2) =1 uy(3 | 2) = 0.2 ;
ng (1 | 3) = 0.1 ; ny (2 | 3) = 0.2 ; ny (3 l3)y=1

Now assume that the input is a fuzzy set described ver-

bally as "u_ is close to 1," and characterized by the membership func-

tion
uU(l) = 1 3 uU(Z) = 0.2 ; uU(3) = 0.1 3

Then, by using (3.7) the response to this fuzzy input is found to be

a fuzzy set defined by the membership function

uY(l) = 1 3 w2 = 03 ;53 u, B = 0.2 ;

16
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It is convenient to regard (3.8) as a mapping from names of
fuzzy sets in U to names of fuzzy sets in Y. In many cases of practical
interest such a mapping can be adequately characterized by a finite, and
perhaps even fairly small, number of points (ordered paris (U,Y)) on the
graph of Go' For example, G0 might be characterized approximately by a
table such as shown below. (For simplicity we suppress the subscript t

in u, and yt.)

ut Yt
1 1
1.1} 1.3
1.2 | 1.6
1.3 | 2
1.4 2.5
1.5 | 2.9
1.6 | 2.5
.7 2.1
1.8 | 1.8
1.9 | 1.6
2 1.5
2.1 | 1.5
3 1.5

where X, X € R, is the name for the fuzzy set of real numbers which are
approximately equal to x. Such a set may be characterized quantitatively
by a membership function. In many practical situations a very approxi-
mate description of this membership function would be sufficient. In
this way, equation (3.8) can serve the purpose of an approximate charac-

terization of a fuzzy memoryless system.

17



Turning to non-memoryless fuzzy systems, consider a system

( vhich is characterized by state equations of the form

t+l

=
]

F(xt’ut) 3.9

o]
il

G(x,,u,) 3.10

where F is a function from the product space XxU to the space of fuzzy

sets in X, G is a function from XxU to the space of fuzzy sets in Y, Xt+l

and u, ., and Y' denotes

t
a fuzzy set in Y which, like Xt+1, is conditioned on X, and u, . Xt+l and

denotes a fuzzy set in X which is conditioned on x

Yt represent, respectively, the fuzzy state and output of CZ at time t
and are defined by the membership functions ux(xt+1 l xt,ut) and

nery | oxpsu).

Equations (3.9) and (3.10) relate the fuzzy state at time
t+l and the fuzzy output at time t to the non-fuzzy state and non-fuzzy
input at time t. As in the case of a memoryless system, we can deduce
from these equations - by repeated application of (1.8) - the state equa-
tions for CZ for the case where the state at time t or the input at time

or both are fuzzy.

Specifically, let us assume that the state at time t is a
fuzzy set characterized by a membership function ux(xt). Then, by apply-
ing (1.8), we deduce from (3.9) and (3.10).

) = ; (ux(xt) A ux(xt+1 | xt,ut)) 3.11
t

iy (X

uy v,) Z (hgx) A ugly, | %, ,u)) 3.12

t

18



*
which in symbolic form may be expressed as

t+1

b
1

t
FO(X .ut) 3.13

4
i

t
GO(X ,ut) 3.14

In what follows, to simplify the appearance of equations such

as (3.11) and (3.12), we shall omit the subscripts X and Y in membership

functions.

By n-fold iteration of (3.13) and (3.14), we can obtain ex-
pressions for Xt+n+l and YF+n, n=1,2, 3, ..., 1n terms of Xt and Uls covs
u - For example, for n = 1, we have

t+2 t
X = F_(F (x",u), u ;) 3.15

t+1 t
Y = Go(Fo(x u)s u o) 3.16

or more compactly
x? - r (x ) 3.17
I RS e = 5 :

t+1 t

Y = 6 (%", u, u,) 3.18

To express (3.17) and (3.18) in terms of membership functions,

we note that on replacing t with t+1 in (3.11) and (3.12), we obtain

*
Note that ux(x ) and ux(xt) represent different membership functions.

t+1
Strictly speaking, we should write them as t+l(xt+l) and y t(xt), res—

. X X
pectively.

19



v [u(xt+1) Az, I X410 ut+1)) 3.19

culx o) =
e+l
WOp) =V (M) MGy | oxpys vpy)) 3.20
e+l :

Then, on substituting u(x_,.) from (3.11) into (3.19) and

(3.20), we get

t+1

W) =V ( V(G Al |oxau)) Aute, |xgy, ut+l))
X1 %t
3.21
and
Wy =V (V I Wiy | xt’ut)) Aulyen l Xet1? ut+1))
xt+1 xt

3.22

which by virtue of the distributivity of V and A may be expressed as

ulxp) = v v (uGx) A nlxey | xu) Aulx, | %415 “t+1))
X1 %t
3.23
W) = vV (uGx) A nixey | xu) Aulyy, AP “t+1))
*e1 *¢
3.24

and likewise for larger values of n. It should be noted that these rela-
tions are fuzzy counterparts of the corresponding expressions for stochas-
tic systems,11 with A and V replacing product and sum, respectively, and

membership functions replacing probability functions (see (3.6) et seq.).

In the above analysis, we have assumed that the successive

inputs Uy vees U are non-fuzzy. On this basis, we can obtain expressions

t+n



1 t+n+l t+n

t+ t
for X s seeg X and Y, ..., ¥ £ t4n°
It is natural to raise the question of what are the corresponding expres-

sions for Xt+1, cens Xt+n+1 and Yt, ey Yt+n

in terms of Xt and u R |

when the successive inputs

are fuzzy.

_ First, let us focus our attention on the state equations
(3.3) and (3.4), in which F and G are functions from XxU to fuzzy sets

in X and Y, respectively. Suppose that both the input at time t and the
state at time t are fuzzy. What would be the expressions for the member-

ship functions of Xt+1 and Yt in this simple case?

Let u(xt,ut) denote the membership function of the fuzzy set

*
whose elements are ordered pairs (xt,ut). Then, using (1.8) we can

t+1

express the membership functions of X and vt as follows:

wixegy) = VoV (e Aulx, | xu)) 3.25
X u
t “t

wiy) = vV (uGxu) Auly, | oxeu)) 3.26
X Y

These formulae assume a simpler form when p(xt,ut) can be

expressed as

u(xt,ut) = u(xt) A “(“t) 3.27

where u(xt) and u(ut) denote, respectively, the membership function of
the fuzzy state and the fuzzy input at time t. In this case, we shall
say that the fuzzy sets Xt and Ut are non-interacting. Essentially, the

*
The probabilistic counterpart of this membership function is the joint
probability of x and u.
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notion of non-intersection of fuzzy sets corresponds to the notion of in-

dependence of random variables.

. t t . .
The assumption that X  and U~ are non-interacting fuzzy sets
is a reasonable one to make in many cases of practical interest. Under

this assumption, (3.25) and (3.26) reduce to

(o 4) = vV oV (u(xt) AuCa) Az, | xt,ut)] 3.28
* Y%

uly,) = X X (x.) AuGe) Auty, | x ,u)) 3.29
t 't

It should be noted that the same expressions can be obtained
by applying (1.8) to (3.13) and (3.14), with the input at time t assumed

to be a fuzzy set characterized by u(ut).

In symbolic form, (3.28) and (3.29) can be expressed as

t+1

>
I

t .t
F (X ,U0) 3.30

2]
It

t .t
Goo(x ,U7) 3.31

where FOo and Goo are, respectively, functions from the product space of
fuzzy sets in X and fuzzy sets in U to the space of fuzzy sets in X and
fuzzy sets in Y. Thus, (3.30) expresses the fuzzy state at time t+l as

a function of the fuzzy state at time t and the fuzzy input at time t.
Similarly, (3.31) expresses the fuzzy output at time t as a function of
the fuzzy state at time t and the fuzzy input at time t. Note that (3.30)
is induced via (1.8) by (3.9), which expresses the fuzzy state at time t+1
as a function of the non-fuzzy state at time t and the non-fuzzy input at

time t. The same is true of (3.31) and (3.10).
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A simple numerical example will serve to illustrate the use
of the formulae derived above. Specifically, let us consider a fuzzy
system with binary input and output, U = Y = {0,1}, and finite state

space X = {a,B8,v}. Suppose that the membership functions u(x )

el | RpoUy
and u(yt [ xt,ut) for this system are characterized by the following ta-

bles

u = 0 u = 1
x
X e+l o B Y o B Y
t
o 0.8 0.6 0.8 0.5
0.7 0.2 1 0.2 1 0.6
Y 0.3 0.3 0.4 0.9 0.7
u = 0 u = 1
y
t
X2 0 1 0 1
o 0.8 0.6 0.3
1 0.5 1
Y 0.8 . 0.3 0.2

Further, assume that Xt and ut are characterized by the mem-

bership functions tabulated below.

p() = 1 ; u(g) = 0.8 ; pu(y) = 0.4 ;

u(@) = 1; p() = 0.3 .
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It should be noted that, as in the case of a memoryless fuzzy
system, (3.30) and (3.31) can be used to provide an approximate charac~
terization of a non-memoryless fuzzy system. To illustrate, let us em-
ploy the convention introduced earlier, namely, using the symbol X to
denote the name of a fuzzy set or real numbers which are approximately
equal to x. Then, viewed as relations between names of fuzzy sets, (3.30)

and (3.31) may take the appearance of tables such as shown below:

t
tx 1] 2] 3] s
5 O I R
t+1
X 0 2 1 4 3
1 3141113
t
tx 1]l 2314 ].
5 Ly 2314
t
! o [oj1]1fo
1 110 1|1

where for simplicity we restricted x and u to integral values. More gen-
erally, the entries in these tables would be names for fuzzy sets in X,
U and Y, and only a finite number of such names would be used as repre-

sentative samples (paradigms) of the fuzzy sets in their respective spaces.

So far, we have restricted our attention to the case where a
single fuzzy input Ut is applied to (1 in state Xt. For this case, we
found expressions for Xt+1 and Yt in terms of Xt and Ut. The same approach
can readily be extended, however, to the case where the input is a sequence

t  t+1 Ut+n, a1,

of non-interacting fuzzy inputs U U The assumption of

2L




P

non-interaction implies that

u(ut, ceey U ) = u(ut) A u(ut+1) A vee A u(ut+n) 3.32

tin

To illustrate, let n = 1. Then by applying (1.8) to (3.23)
and (3.24), we obtain

uix,,,) = vV V. VvV VvV (u(xt) Au(xt+1|xt,ut) A
t+1 %t Yt UYenl

WGy | ®ygs ugg) A uCa) Aute, ) 3.33

W) = Vo VoV v (ux) Aulx | oxu) A

t+1 Xt Yt Yen

) A u(ut) A u(u 3.34

LS A | %41 Bem1 t+l))

As in the case of stochastic systems, for higher values of
n such relations can be expressed more compactly through the use of vec-
tor and matrix notation. For our purposes, the simple case of n = 1 con-
sidered above suffices to illustrate the main features of the method which
can be used to compute the fuzzy state and fuzzy output of a system at the

end of a finite sequence of non-interacting fuzzy inputs.
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CHAPTER IV

FUZZY SYSTEMS AND FUZZY ALGORITHMS

3 .
As was shown in a recent note,” the notion of a fuzzy system

bears a close relation to that of a fuzzy algorithm.

Roughly speaking, a fuzzy algorithm is an algorithm in which
some of the instructions are fuzzy in nature. Examples of such instruc-
tions are: (a) Increase x slightly if y is slightly larger than 10;

(b) Decrease u until it becomes much smaller than v; (c) Reduce speed if

the road is slippery. The sources of fuzziness in these instructions

are the underlined words.

More generally, we may view a fuzzy algorithm as a fuzzy sys-

tem A characterized by equations of the form:

£+l rxt,uh) 4.1

P
]

H(x%) 4.2

(e}
|

where Xt is a fuzzy state of A at time t, Ut is a fuzzy input (represent-—
ing a fuzzy instruction) at time t, and Xt+1 is the fuzzy state at time

t+l resulting from the execution of the fuzzy instruction represented by
Ut. As seen from (4.1) and (4.2), the function F defines the dependence

of the fuzzy state at time t+l on the fuzzy state at time t and the fuzzy
input at time t, while the function H describes the dependence of the fuzzy

input at time t on the fuzzy state at time t.

To illustrate (4.1) and (4.2), we shall consider a very sim-
ple example. Suppose that X is a fuzzy subset of a finite set X =

{a 4} and U° is a fuzzy subset of a finite set U = {Bl, 82}.

1° (12, 0.3, o
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Since the membership functions of xt and Ut are mappings from, respectively,
X'and U to the unit interval, these functions can be represented as points
in unit hypercubes in R4 and Rz, which we shall denote for convenience by
C4 and C2. Thus, F may be defined by a mapping from C4 x C2 to C4 and H

by a mapping from C4 to C2. For example, if the membership function of

Xt is represented by the vector (0.5, 0.8, 1, 0.6) and that of Ut by the
vector (1, 0.2), then the membership function of Xt+l would be defined by

F as a vector, say, (0.2, 1, 0.8, 0.4), while that of Ut would be defined

by H as a vector, say (1, 0.2).

It is clear that even in the very simple case where X and U
are small finite sets, it is impracticable to attempt to characterize F
with any degree of precision as a mapping from a product of unit hyper-
cubes to a unit hypercube, Thus, in general, it would be necessary to re-
sort to an approximate definition of F and H through the process of exem-
plification, as was done in the case of the relation between Yt and Ut in
Chapter 3 (Eq. (3.8) et seq.). This amounts to selecting a finite number
of sample fuzzy sets in X and U, and tabulating finite approximations to
F and H as mappings from and to the names of these fuzzy sets. 1In this
light, an instruction such as '"Reduce speed if the road is slippery' may
be viewed as an ordered pair in H involving the names of fuzzy sets:

"Reduce speed" and "Road is slippery."

Consider now the following situation. One is given an instruc-
tion of the form: "If x is much larger than 1 make y equal to 2. Other-~
wise make y equal to 1." Furthermore, the membership function of the class

of numbers which are much larger than 1 is specified to be

0 for x < 1

Mg (x)

i

-2:~1
{1+ @x-1) 2) for x 21 4.3

where E denotes the class in question and Vg is its membership function.
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Now suppose that x = 3. How should the above instruction

be executed? Note that uE(B) = 0.8.

The answer to this question is that the given instruction
does not cover this contingency or, for that matter, any situation in
which x is a number such that uE(x) > 0. Specifically, the instruction
in question tells us only that if the input is a fuzzy set characterized
by the membership function (4.3), then y = 23 and if the input is char-
acterized by the membership function 1 - uE(x), then y = 1. Now when x
is specified to be equal to 3, the input may be regarded as a fuzzy set
whose membership function is equal to 1 for x = 3 and vanishes elsewhere.
This fuzzy set 1s not in the domain of the instruction - viewing instruc-

tion as a function defined on a collection of fuzzy sets.

In some cases, it may be permissible to extend the domain of
definition of a fuzzy instruction by an appropriate interpretation of its
intent. For example, in the case considered above it may be reasonable
to assume that y = 2 not just for the fuzzy set of numbers which are much
larger than 1, but also for all fuzzy subsets of this set whose maximal
grade of membership exceeds or is equal to a prescribed threshold; or, it
may be reasonable to assume that y = 2 for all x whose grade of member-
ship in E is greater than or equal to a threshold ao. Alternatively, the
domain of the instruction can be extended by employing randomized execu-
tion, that is, by choosing y = 2 and y = 1 for a given x with probabilities
uE(x) and 1 - uE(x), respectively. These and other ways of extending the
domain of fuzzy instructions make the specification of ¥ and H a problem
which, though nontrivial, is well within the range of computational feasi-

bility in many cases of practical interest.

Actually, crude forms of fuzzy algorithms are employed quite
extensively in everyday practice. A cooking recipe is an example of an
algorithm of this type. So is the set of instructions for parking a car

or repairing a TV set. The effectiveness of such algorithms depends in
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A

large measure on the existence of a fuzzy feedback which makes it possi-
ble to observe the output and apply a corrective input. Indeed, this is
implicit in equation (4.3), except that in practice the H function is it-
self quite ill-defined.

The foregoing discussion of the notion of a fuzzy algorithm
was intended primarily to point to a close connection between this notion
and that of a fuzzy system. It may well turn out, however, that many
of the complex problems -~ such as machine translation of languages - which
so far have eluded all attempts to solve them by conventional techniques -
cannot be properly formulated, much less solved, without the use, in one
form or another, of a broader conceptual framework in which the notion of -

a fuzzy algorithm plays a basic role,
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CHAPTER V

THE CONCEPT OF AGGREGATE

As was pointed out in Chapter 2, the state of a system may
be viewed as a name for an aggregate of input-output pairs. In what fol-
lows, we shall summarize some of the principal notions relating to the
concept of an aggregate, but will leave open the question of how these

notions can be extended to fuzzy systems.

As in Chapter 2, let u and y denote a pair of sequences

u = ugu, ... U and y = Yo¥1 +c Ve of length t+1, where, for simplicity,
t is assumed to range over non-negative integers. If u = Ugly «ee U and
VS Vg e Vi then the concatenation of u and v is denoted by uv and
is defined by uv = Ugly eee WV 0 wee Vo

Definition of a system. A system (discrete-time system) CZ is defined as

a collection of ordered pairs of time-functions (u,y) satisfying the con-

dition of closure under segmentation or CUS for short. Thus,

CZ = {(u,y)} , ue v* y € v*

where u and y are, respectively, the input and output of C:l and (u,y) is
an input-output pair belonging to (L. The expression for the CUS condi-
tion is:

)

If u=vv' and y = ww'

(that is, u is a concatenation of time
functions v and v' and y is a concatenation of w and w') and (u,y) € CZ,
then (v,w) € CZ and (v',w') € CZ. In effect, this condition requires that

every segment of an input-—output pair of CZ be an input—output pair of CZ.

Comment. When we define a system as a collection of input-output pairs,

we are in effect identifying a physical system or a mathematical model of
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it with the totality of observations which can be made of its input and
output time-~functions. Furthermore, we tacitly assume that we have as
many copies of the system as there are different initial states, and that
each u is applied to all these copies, so that to each u correspond as

many y's as there are copies of the system.

To characterize ({ as a collection of input—-output pairs it
is usually more expedient to employ an algorithm for generating input-
output pairs belonging to (L than to 1ist them. From this point of view,
a differential or difference equation relating the output of a system to
its input may be viewed as a compact way of specifying the collection of
input-output pairs which defines cZ. An algorithm or an equation which

serves this purpose is called an input—-output relation.

Definition of an aggregate. Let CZ(to) denote a subset of ijcomprising

those input-output pairs which start at time to. Now suppose we group to-
gether those input-output pairs in CZ(to) which have some property in com-
mon and call such groups bundles of input-output paris. As we shall see
presently, the aggregates of (! are bundles of input-output pairs with cer-
tain special properties which are defined in such a way as to make a state

of CZ merely a name or a label for an aggregate of A.
It is convenient to state the properties in question as a set
of four conditions defining aggregates of CZ. These conditions are as

follows:

1. Covering condition., Let a generic bundle of input-output pairs in

CZ(tO) be denoted by éZa (to), with o, serving as an identifying tag for
o
a bundle, A collection of such bundles will be denoted by {62; (to)},
o
ol € I , where Iy 1is the range of values which can be assumed by a  at
o o
to. Anticipating that ag will play the role of a state of LZ, I, will
o
be referred to as the state space of CZ at time to. Note that to is a

variable ranging over the integers 0,1,2, ... .
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The covering condition requires that the collection {Cza (to)},
' o

o €I, , be a covering for CZ(t ), that is,
o Po) o

2 CZ%(:;O) = d(to) , forall t_inm {0,1, ...} . 4.4
(o]

In effect, this condition requires that every input-—output pair in CZ(to)
be included in some bundle in the collection {Cza (to)}, o € I .
o 0

2, Uniqueness condition. The uniqueness condition is expressed by

(u,y) € aao(to) and (u,y') € aao(to) > y=y'. 4.5

In other words, to each input u in the domain of the relation
CZQ (to) corresponds a unique output y. (Note that the sequences u and y

o
are assumed to be of the same length.)

3. Prefix condition. Consider an input-output pair (uu',yy') in CZ; (to)

which is a concatenation of the input-ocutput pairs (u,y) and (u',y'). The

expression for the condition is

(ua',yy') € U, (e) > (u,y) € da (t) - 4.6
o o}

Thus, this condition requires that any prefix (i.e., (u,y)) of an input-

output pair in CZ; (to) also be an input-output pair in ng (to).
0 o

4. Continuation condition. As in the preceding condition, let (uu',yy')

be an input—output pair in éZﬁ (t.), with (u',y') starting at, say, £
o
The continuation condition may be expressed as

'y | watyy) e & (k)3 = aal(tl) 4.7
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where Czal(tl) denotes a bundle of input-output pairs starting at tl’
with the understanding that CQ& (tl) is a member of the collection of
bundles {Czao(to)}, @ € Eto, t, = 0,1,2, ..., and that @, ranges over

L .
©1

Informally, the continuation condition merely asserts that
a state ao-at time to is transferred by input u Into a state a

t

1 at time

1°

In terms of the four conditions stated above the aggregates

and states of a system can be defined as follows.

Definition. The aggregates of CZ are bundles of input-output pairs of
a satisfying the covering, uniqueness, prefix and continuation conditions.
The states of (! are names (or tags) of the aggregates of Cl. The set

of names of the aggregates of input-output pairs starting at to is the

state-space of A at time to. Usually, the state spacelzto is assumed

to be independent of to.

With the above definitions as the point of departure, one
can deduce all of the properties of the states and state equations of a
system which, in the classical approach, are assumed at the outset. The
way in which this can be done is described in [8] and, more explicitly

though in lesser detail, in [9].

In Chapter 3, we have shown how the conventional approach
in which the point of departure is the definition of a system through its
state equations (3.1) and (3.2), can be generalized to fuzzy systems.
This naturally gives rise to the question: How can the approach sketched
above in which the starting point is (a) the definition of a system as a
collection of input-output pairs; (b) the definition of an aggregate as
a bundle of input-output pairs satisfying certain conditions; and (c) the
definition of a state as a name for an aggregate, be similarly generalized

to fuzzy systems?
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If we could find an answer to this basic question, we might,
perhaps, be able to develop effective techniques for the approximate
analysis of complex systems for which state equations cannot be postulated
- at the outset. We state this question as an open problem because its
solution can be perceived only dimly at this rudimentary stage of the

development of the theory of fuzzy systems.
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